PULSAR WIND NEBULAE: THE WONDROUS MACHINES OF HIGH ENERGY ASTROPHYSICS

NICCOLO' BUCCIANTINI INAF ARCETRI - UNIV. FIRENZE - INFN

DEATH OF A MASSIVE STAR – THE BIRTH OF PULSAR

STAR MORE MASSIVE THAN 8 MSUN END THEIR LIFE IN SUPERNOVA EXPLOSION

STAR LESS MASSIVE THAN 25-30 MSUN LEAVE BEHIND A COMPACT STELLAR REMNANT IN THE FORM OF A NEUTRON STAR

THE COMBINATION OF STRONG MAGNETIC FIELD (10¹²G) AND RAPID ROTATION (P=0.001–1S) CREATES STRONG ELECTRIC FIELDS AT THE SURFACE, EXTRACTING PAIRS AND PRODUCING PAIR CASCADES. OBSERVED AS PULSARS

ACCELERATION RECIPES – TAKE HOME MESSAGE

FINE STRUCTURES – A LAB FOR RELTIVISTICN FLUID DYNAMICS

REPRODUCING OBSERVATIONS

REPRODUCING OBSERVATIONS

Camus et al 2008

REPRODUCING OBSERVATIONS

Camus et al 2008

12 SOURCES DETECTED BY LHAASO ABOVE 100 TEV

Table 1 | UHE γ-ray sources

Source name	RA (°)	dec. (°)	Significance above 100 TeV (×σ)	E _{max} (PeV)	Flux at 100 TeV (CU)
LHAASO J0534+2202	83.55	22.05	17.8	0.88 ± 0.11	1.00(0.14)
LHAASO J1825-1326	276.45	-13.45	16.4	0.42 ± 0.16	3.57(0.52)
LHAASO J1839-0545	279.95	-5.75	7.7	0.21±0.05	0.70(0.18)
LHAASO J1843-0338	280.75	-3.65	8.5	0.26 - 0.10 ^{+0.16}	0.73(0.17)
LHAASO J1849-0003	282.35	-0.05	10.4	0.35 ± 0.07	0.74(0.15)
LHAASO J1908+0621	287.05	6.35	17.2	0.44 ± 0.05	1.36(0.18)
LHAASO J1929+1745	292.25	17.75	7.4	0.71-0.07 ^{+0.16}	0.38(0.09)
LHAASO J1956+2845	299.05	28.75	7.4	0.42 ± 0.03	0.41(0.09)
LHAASO J2018+3651	304.75	36.85	10.4	0.27 ± 0.02	0.50(0.10)
LHAASO J2032+4102	308.05	41.05	10.5	1.42 ± 0.13	0.54(0.10)
LHAASO J2108+5157	317.15	51.95	8.3	0.43 ± 0.05	0.38(0.09)
LHAASO J2226+6057	336.75	60.95	13.6	0.57 ± 0.19	1.05(0.16)

PEV PROTONS OR ELECTRONS?

ALL SOURCES HAVE A PSR IN THE FIELD EXCEPT ONE

PSR VOLTAGE

IN YOUNG ENERGETIC SYSTEMS ACCELERATION IS LIKELY LOSS LIMITED

$$t_{acc} = \frac{E}{e\xi_e Bc} < t_{loss} = \frac{6\pi (mc^2)^2}{\sigma_T c B^2 E}$$

$$E_{max} \approx 6 \ PeV \ \xi_e^{1/2} \ B_{-4}^{-1/2}$$

POTENTIAL LIMITED ACCELERATION

$$mc^2\gamma_{max} = e\sqrt{\frac{L}{c}} = e\Phi_{psr}$$

POTENTIAL LIMITED ACCELERATION

$$mc^2\gamma_{max} = e\sqrt{\frac{L}{c}} = e\Phi_{psr}$$

ACCELERATION LIMIT AT THE TS

MAGNETISATION IN THE CRAB IS JUST BELOW EQUIPARTITION B \sim 150–120 UG

$$\frac{L}{4\pi c R_{ts}^2} = \frac{1}{2} \frac{3Lt}{4\pi R_n^3}$$
$$\frac{L}{4\pi c R_{ts}^2} = P_{neb} = \frac{1}{\sigma} \frac{B_{ts}^2}{8\pi}$$
$$R_{ts} = \frac{1}{B_{ts}} \sqrt{\frac{\sigma L}{c}}$$

 $\frac{eB_{ts}}{mc^2\gamma_{max}} = R_L = R_{ts}$

$$\frac{mc^2\gamma_{max}}{eB_{ts}} = R_L = R_{ts}$$

$$\frac{E_{max}}{eB_{ts}} = e\sqrt{\frac{\sigma L}{c}} = e\Phi_{psr}\sqrt{\sigma}$$

LOSS LIMITED ACCELERATION

COMPARING GYRO-PERIOD WRT SYNCH COOLING TIME

$$\tau_{gyr} = \frac{mc\gamma}{eB} \qquad \tau_{syn} = \frac{3m^3c^5}{2e^4B^2\gamma} \qquad \gamma_{max} \simeq 10^8 \frac{1}{\sqrt{B}}$$

LOSS LIMITED ACCELERATION

COMPARING GYRO-PERIOD WRT SYNCH COOLING TIME

$$\tau_{gyr} = \frac{mc\gamma}{eB} \qquad \tau_{syn} = \frac{3m^3c^5}{2e^4B^2\gamma} \qquad \gamma_{max} \simeq 10^8 \frac{1}{\sqrt{B}}$$

MAXIMUM FREQUENCY IS FIXED

 $|\nu_{syn,max} \simeq 150 MeV|$

LOSS LIMITED ACCELERATION

COMPARING GYRO-PERIOD WRT SYNCH COOLING TIME

$$\tau_{gyr} = \frac{mc\gamma}{eB} \qquad \tau_{syn} = \frac{3m^3c^5}{2e^4B^2\gamma} \qquad \gamma_{max} \simeq 10$$

MAXIMUM FREQUENCY IS FIXED

$$\nu_{syn,max} \simeq 150 MeV$$

IN CRAB THE LIMITS ALL COINCIDE

OTHERS ALL POTENTIAL LIMITED

IN TURBULENCE INTERMITTENCY MANIFESTS AS HIGHER TAILS AT SMALL SCALE ON THE PDE

Bucciantini - Winds Throughout the Universe - 2023 - Annapolis

IN TURBULENCE INTERMITTENCY MANIFESTS AS HIGHER TAILS AT SMALL SCALE ON THE PDE

Bucciantini - Winds Throughout the Universe - 2023 - Annapolis

IN TURBULENCE INTERMITTENCY MANIFESTS AS HIGHER TAILS AT SMALL SCALE ON THE PDE

IN TURBULENCE INTERMITTENCY MANIFESTS AS HIGHER TAILS AT SMALL SCALE ON THE PDE

NOT CLEAR IF STATISTICS OF INTERMITTENCY COMPATIBLE WITH MILL-G FIELD

TIME EVOLUTION I

MIXING WITH THE SNR MATTER LARGER RADII E KNOTTY STRUCTURE RE-ENERGIZATION DUE TO COMPRESSION

Kolb et al 2017

Blondin et al 2001

Ma et al 2016

TIME EVOLUTION I

PWNE WILL BE THE MOST NUMEROUS GALACTIC GAMMA-RAY SOURCES

DISTRIBUTION IN THE GALAXY

PWN IN THE GALAXY MODELLED WITH NUMERICAL SIMULATIONS + RADIATIVE CODE

PWN ARE PRIMARY TARGETS FOR CTA AND ASTRI MA

CONTRIBUTION AT GAMMA-RAYS

TIME EVOLUTION III

MOST PULSARS KICK VELOCITY IS SUPERSONIC IN ISM

FORWARD SHOCK VISIBLE IN HA PWN VISIBLE AS A RADIO AND X-RAYS TAIL

PAIR ESCAPE

The are BS PWNe where the X-ray "tail" is where it should not be!

The particles in these features are ~ PSR voltage

TeV halo suggest strong diffusion

PAIR ESCAPE IN MHD MODELS

PAIR ESCAPE IN MHD MODELS

Olmi & Bucciantini 2019

ESCAPE ASSOCIATED TO RECONNECTION SITES AT THE MAGNETOPAUSE

> STRONG ENERGY DEPENDENCE

TURBULENCE IN THE TAIL DEPENDENT ON INTERACTION GEOMETRY

PAIR ESCAPE IN MHD MODELS

Olmi & Bucciantini 2019

ESCAPE ASSOCIATED TO RECONNECTION SITES AT THE MAGNETOPAUSE

STRONG ENERGY DEPENDENCE

TURBULENCE IN THE TAIL DEPENDENT ON INTERACTION GEOMETRY

IXPE – X–RAY POLARIMETRY

Mission name	Imaging X-ray Polarimetry Explorer (IXPE)
Mission category	NASA Astrophysics Small Explorer (SMEX)
Operational phase	2021 launch, 2 years following 1 month commissioning, extension possible
Orbital parameters	Circular at 540–620 km altitude, equatorial; one ground station near equator
Spacecraft features	3-axis stabilized pointing (non-propellant), GPS time and position
Science payload	3 x-ray telescopes, 4.0-m focal length (deployed), co-aligned to star tracker
Telescope optics (×3)	24 monolithic (P+S surfaces) Wolter-1 electroformed shells, coaxially nested
Telescope detector (×3)	Polarization-sensitive gas pixel detector (GPD) to image photo-electron track
Polarization sensitivity	Minimum Detectible Polarization (99% confidence) MDP ₉₉ < 5.5%, 0.5-mCrab, 10 days
Spurious modulation	< 0.3% systematic error in modulation amplitude for unpolarized source
Angular resolution	< 30-arcsec half-power diameter (HPD)
Field of view (FOV)	\approx 10-arcmin diameter overlapping FOV of 3 detectors' polarization-sensitive areas

IXPE – X–RAY POLARIMETRY – CRAB

IXPE – X–RAY POLARIMETRY – VELA

IXPE – X–RAY POLARIMETRY – CRAB PSR

CONCLUSIONS

PWNE HAVE BEEN AT THE HEART OF HIGH ENERGY ASTROPHYSICS & THE CRAB NEBULA IS ONE OF THE MOST STUDIED OBJET IN THE SKY WHERE MANY HIGH ENERGY PROCESSES HAVE BEEN DISCOVERED/IDENTIFIED

PWNE & PSRS REMAIN ONE OF THE MOST INTERESTING ENVIRONMENT OF MODERN PHYSICS AND KEEPS SURPRISING US WITH NEW PHENOMENOLOGY

STILL MANY OPEN QUESTIONS NED TO BE ANSWERED:

HOW DOES EVOLVED PWNE BEHAVE? WHAT ACCELERATION PROCESS IS AT WORK AND WHERE? HOW PARTICLE MANAGE TO ESCAPE? WHAT IS THE SOURCE OF THE GAMMA-RAY VARIABILITY? WHAT IS THE ROLE OF TURBULENCE AND WHAT POLARISATION CAN TELL US?

THANK YOU