PULSAR WIND NEBULAE

THE WONDROUS MACHINES OF HIGH ENERGY ASTROPHYSICS

NICCOLO' BUCCIANTINI

INAF ARCETRI - UNIV. FIRENZE - INFN

> UNIVERSITÀ DEGLI STUDI FIRENZE

DEATH OF A MASSIVE STAR - THE BIRTH OF PULSAR

STAR MORE MASSIVE THAN 8 MSUN END THEIR LIFE IN SUPERNOVA EXPLOSION

STAR LESS MASSIVE THAN 25-30 MSUN LEAVE BEHIND A COMPACT STELLAR REMNANT IN THE FORM OF A NEUTRON STAR

THE COMBINATION OF STRONG MAGNEIIC FIELD (1012G) AND RAPID ROTATION ($P=0.001$-1S) CREATES STRONG ELECTRIC FIELDS AT THE SURFACE, EXTRACTING PAIRS AND PRODUCING PAIR CASCADES. OBSERVED AS PULSARS

THE NON THERMAL ACCELERATORE

High energy break

ACCELERATION RECIPES - TAKE HOME MESSAGE

FINE STRUCTURES - A LAB FOR RELTIVISTICN FLUID DYNAMICS

Bucciantini - Winds Throughout the Universe - 2023-Annapolis

REPRODUCING OBSERVATIONS

[^0]
REPRODUCING OBSERVATIONS

Camus et al 2008
Bucciantini - Winds Throughout the Universe - 2023 - Annapolis

REPRODUCING OBSERVATIONS

Camus et al 2008
Bucciantini - Winds Throughout the Universe - 2023 - Annapolis

12 SOURCES DETECTED BY LHAASO ABOVE 100 TEV

Table 1|UHE Y-ray sources

PEN PROTONS OR ELECTRONS?

ALL SOURCES HAVE A PR IN THE FIELD EXCEPT ONE

PSR VOLIAGE

STRICT LIMIT FROM THE PSR POIENIIAL DROP

$$
\begin{aligned}
E_{\text {max,abs }} & =e \xi_{E} B_{T S} R_{T S} \\
\frac{B_{T S}^{2}}{8 \pi} & =\xi_{B} \frac{\dot{E}}{4 \pi R_{T S}^{2} c}
\end{aligned}
$$

$$
E_{\text {max }, a b s}=e \xi_{E} \xi_{B}^{1 / 2} \sqrt{\dot{E} / c} \approx 1.8 \mathrm{PeV} \xi_{E} \xi_{B}^{1 / 2} \dot{E}_{36}^{1 / 2}
$$

$$
E_{\text {max }, \text { Crab }} \approx 30 \mathrm{PeV}
$$

IN YOUNG ENERGETIC SYSTEMS ACCELERATION IS LIKELY LOSS LIMITED

$$
t_{a c c}=\frac{E}{e \xi_{c} B c}<t_{\text {loss }}=\frac{6 \pi\left(m c^{2}\right)^{2}}{\sigma_{T} c B^{2} E}
$$

$$
E_{\text {max }} \approx 6 \mathrm{PeV} \xi_{e}^{1 / 2} B_{-4}^{-1 / 2}
$$

ORIGIN OF THE SYNCHROTRON CUTOFF

POTENTIAL LIMITED ACCELERATION

$$
m c^{2} \gamma_{\max }=e \sqrt{\frac{L}{c}}=e \Phi_{p s r}
$$

ORIGIN OF THE SYNCHROTRON CUTOFF

POTENTIAL LIMIIED ACCELERATION

$$
m c^{2} \gamma_{\max }=e \sqrt{\frac{L}{c}}=e \Phi_{p s r}
$$

ACCELERATION LIMIT AT THE TS

MAGNETISATION IN THE CRAB IS JUST BELOW EQUIPARTITION B ~ 150-120 UG

ORIGIN OF THE SYNCHROTRON CUTOFF

LOSS LIMIIIED ACCELERAIION

COMPARING GYRO-PERIOD WRT SYNCH COOLING TIME

$$
\tau_{s y r}=\frac{m c \gamma}{e B} \quad \tau_{s y n}=\frac{3 m^{3} c^{5}}{2 e^{4} B^{2} \gamma} \quad \gamma_{\max } \simeq 10^{8} \frac{1}{\sqrt{B}}
$$

ORIGIN OF THE SYNCHROTRON CUTOFF

LOSS LIMIIIED ACCELERAIION

COMPARING GYRO-PERIOD WRT SYNCH COOLING TIME

$$
\tau_{\text {syr }}=\frac{m c \gamma}{e B} \quad \tau_{\text {syn }}=\frac{3 m^{3} c^{5}}{2 e^{4} B^{2} \gamma} \quad \gamma_{\max } \simeq 10^{8} \frac{1}{\sqrt{B}}
$$

MAXIMUM FREQUENCY IS FIXED

$$
\nu_{\text {syn }, \max } \simeq 150 \mathrm{MeV}
$$

ORIGIN OF THE SYNCHROTRON CUTOFF

LOSS LIMIIIED ACCELERAIION

COMPARING GYRO-PERIOD WRT SYNCH COOLING TIME

$$
\tau_{g y r}=\frac{m c \gamma}{e B} \quad \tau_{s y n}=\frac{3 m^{3} c^{5}}{2 e^{4} B^{2} \gamma} \quad \gamma_{\max } \simeq 10^{8} \frac{1}{\sqrt{B}}
$$

MAXIMUM FREQUENCY IS FIXED

$\nu_{\text {syn,max }} \simeq 150 \mathrm{MeV}$
IN CRAB THE LIMITS ALL COINCIDE

OTHERS ALL POTENTIAL LIMITED

INTERMITIENCY

IT TURBULENCE NTIERMIIENCY MANIFESTS AS HIGHER TALS AT SMALL SCALE ON THE PDE

Bucciantini - Winds Throughout the Universe - 2023 - Annapolis

INTERMITIENCY

IN TURBULENCE NTERMIIENCY MANIFESTS AS HIGHER TALLS AT SMALL SCALE ON THE PDE

Bucciantini - Winds Throughout the Universe - 2023 - Annapolis

INTERMITIENCY

IN TURBULENCE NTERMIIENCY MANIFESTS AS HIGHER TALLS AT SMALL SCALE ON THE PDE

Bucciantini - Winds Throughout the Universe - 2023 - Annapolis

INTERMITIENCY

IN TURBULENCE NTIERMIIENCY MANIFESTS AS HIGHER TALLS AT SMALL SCALE ON THE PDE

NOT CLEAR IF STATISTICS OF INTERMITIENCY COMPATIBLE

 WITH MILL-G FIELD
TIME EVOLUTION I

MIXING WITHH THE SNR MATIER LARGER RADII E KNOTTY STRUCTURE RE-ENERGIZAIION DUE TO COMPRESSION

Kolb et al 2017

TIME EVOLUTION I

MIXING WITH THE SNR MATIER LARGER RADII E KNOTTY STRUCTURE RE-ENERGIZATION DUE TO COMPRESSION

Ma et al 2016

PWNE WILL BE THE MOST NUMEROUS GALACTIC GAMMA-RAY SOURCES

DISTRIBUTION IN THE GALAXY

PWN IN THE GALAXY MODELLED WITH NUMERICAL SIMULATIONS + RADIATIVE CODE

PWN ARE PRIMARY TARGEIS FOR CTA AND ASTR MA

CONTRIBUTION AT GAMMA-RAYS

TIME EVOLUTION III

MOST PULSARS KICK VELOCITY IS SUPERSONIC IN ISM
 FORWARD SHOCK VISBLE IN HA PWN VISIBLE AS A RADIO AND X-RAYS TAIL

The are BS PWNe where the X-ray "tail" is where it should not be!

The particles in these features are \sim PSR voltane

Geminga (HAWC Abeysekara et al 2017)

PSRR JIIO1-(Àavan et al 2016)

TeV halo suggest strong diffifusion

PAIR ESCAPE IN MHD MODELS

LOW ENERGY PARTICLES REMAIN CONFINED IN CURRENTS

VERY HIGH ENERGY PARIICLES CAN ALSO DIFFUSE AHEAD

MAUSE
X-RAY HALO

PAR ESCAPE IN MHD MODELS

TURBULENCE IN THE TALL DEPENDENT ON INTERACTION GEOMEIRY

Olmi \& Bucciantini 2019

ESCAPE ASSOCIATED TO RECONNECTION STTES AT THE MAGNETOPAUSE

STRONG ENERGY

 DEPENDENCE
PAIR ESCAPE IN MHD MODELS

Olmi \& Bucciantini 2019

ESCAPE ASSOCIATED TO RECONNECTION SITES AT THE MAGNETOPAUSE
 STRONG ENERGY DEPENDENCE

IXPE - X-RAY POLARIMEIRY

24 NI-CO W1 SHELLS

2-8 KEV BAND

Mission name	Imaging X-ray Polarimetry Explorer (IXPE)
Mission category	NASA Astrophysics Small Explorer (SMEX)
Operational phase	2021 launch, 2 years following 1 month commissioning, extension possible
Orbital parameters	Circular at 540-620 km altitude, equatorial; one ground station near equator
Spacecraft features	3 -axis stabilized pointing (non-propellant), GPS time and position
Science payload	3 x-ray telescopes, 4.0-m focal length (deployed), co-aligned to star tracker
Telescope optics ($\times 3$)	24 monolithic (P+S surfaces) Wolter-1 electroformed shells, coaxially nested
Telescope detector ($\times 3$)	Polarization-sensitive gas pixel detector (GPD) to image photo-electron track
Polarization sensitivity	Minimum Detectible Polarization (99\% confidence) MDP M9 $^{<}$< 5.5\%, 0.5-mCrab, 10 days
Spurious modulation	$<0.3 \%$ systematic error in modulation amplitude for unpolarized source
Angular resolution	<30-arcsec half-power diameter (HPD)
Field of view (FOV)	$\approx 10-$-arcmin diameter overlapping FOV of 3 detectors' polarization-sensitive areas

Bucciantini - Winds Throughout the Universe - 2023 - Annapolis

IXPE - X-RAY POLARIMETRY - CRAB

Bucciantini - Winds Throughout the Universe - 2023 - Annapolis

IXPE - X-RAY POLARIMEIRY - VELA

Fei et al 2023

Bucciantini - Winds Throughout the Universe - 2023-Annapolis

IXPE - X-RAY POLARIMETRY - CRAB PSR

Bucciantini - Winds Throughout the Universe - 2023 - Annapolis

CONCLUSIONS

PWNE HAVE BEEN AT THE HEART OF HIGH ENERGY ASTROPHYSICS \& THE CRAB NEBULA IS ONE OF THE MOST STUDIED OBJET IN THE SKY WHERE MANY HIGH ENERGY PROCESSES HAVE BEEN DISCOVEREDIDENTIIFIED

PWNE \& PRS REMAIN ONE OF THE MOST WTERESTING ENYRONMENT OF MODERN PHYSICS AND KEEPS SURPRISING US WITH NEW PHENOMENOLOGY

STILL MANY OPEN QUESTIONS NED TO BE ANSWERED:

HOW DOES EVOLVED PWNE BEHAVE?
WHAT ACCELERATION PROCESS IS AT WORK AND WHERE?
HOW PARTICLE MANAGE TO ESCAPE?
WHAT IS THE SOURCE OF THE GAMMA-RAY VARIABILITY? WHAT IS THE ROLE OF TURBULENCE AND WHAT POLARISATION CAN TELL US?

THANK YOU

Bucciantini - Winds Throughout the Universe - 2023 - Annapolis

[^0]: Bucciantini - Winds Throughout the Universe - 2023 - Annapolis

