Recurring Ultrafast Outflows from Repeating Nuclear Transients and a Potential Unification model

Suvi Gezari, Kate Alexander, James Miller-Jones, Erin Kara, Assaf Horesh, Itai Sfaradi, David Kaplan, Noam Burger, Tara Murphy, Ronald Remillard, James Steiner, Thomas Wevers, Johannes Buchner, Andrea Merloni, Andy Fabian, Michael Fausnaugh, Tansu Dylan, Diego Altamirano, Anna Payne, Elizabeth Ferrara, Itai Linial, Chris Nixon, Agnieszka Janiuk, Marzena Sniegowska

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

Three flavors of <u>repeating</u> extragalactic X-ray transients

Repeating Extragalactic Transients

Three flavors of repeating extragalactic X-ray transients

An example system showing an X-ray quasi-periodic oscillation ~ 1 hour

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

Three flavors of repeating extragalactic X-ray transients

An example system showing X-ray *Eruptions* roughly once every 16 hours

Arcodia+Pasham et al. 2021, Nature

Repeating Extragalactic Transients

Three flavors of repeating extragalactic X-ray transients

Pasham et al., under review

Repeating Extragalactic Transients

Recurring (phase-dependent) spectral deviations that can be interpreted as outflows maybe present in all <u>three</u> classes

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

A nuclear transient from a nearby galaxy (a few 100 Mpcs)

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

A nuclear transient from a nearby galaxy (a few 100 Mpcs)

Dheeraj R Pasham (DJ)

An UltraFast Outflow signature in the thermal X-ray spectrum

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

The residuals can be interpreted as an ultrafast outflow

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

An UltraFast Outflow signature in the thermal X-ray spectrum

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

For the first time, NICER's large effective area allows us to track the strength of this feature with time

- Astrophysics from the international space station
- Large X-ray collecting area
- 0.3-10 keV bandpass
- Excellent maneuvering capability
- Good energy spectral resolution

PI: Keith Gendreau; Deputy PI: Zaven

Arzoumanian

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

Tracking the strength of the outflow with time

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

Tracking the outflow's strength with time

Pasham et al., submitted

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

Quasi-Periodic Outflows

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

Phase-resolved spectra strengthens the outflow deficit ratio analysis

A source showing Quasi-Periodic Eruptions

Graduate Student at Johns Hopkins

Guolo, Pasham et al., under review Pasham et al., in prep.

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

A source showing Quasi-Periodic Eruptions + Quasi-Periodic Outflows

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

I went back into the archives to look for outflows in other published QPE sources

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

Current Models for Quasi-Periodic Eruptions:

Repeating Extragalactic Transients

Quasi-periodicity is consistent with all of these models

- Accretion disk instability based models: the radius at which the instability occurs can vary and thus the recurrence periods.
- Orbiting objects based models: combination of General relativistic effects (Lense-Thirring precession of the secondary's orbit and the inner accretion disk + nodal precession of the secondary's orbit + ellipticity) and the geometric orientation of the system.

Pasham et al. 2023, ApJL, under review

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

Any viable model MUST be able to explain repeating ultrafast outflows from these systems

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

A potential SMBH + IMBH binary: Based on an in-depth theoretical analysis

Pasham et al., submitted

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

We consider several classes of models

Model/class of models	Strengths	Weaknesses	Notes
Inner disc precession	Thought to be commonly seen in stellar-mass black hole binaries (119)	The observed changes from high column, high ionization parameter to low column, low ionization along with constant outflow speed are inconsistent with precession with all known types of outflows (110–114)	Disfavoured (see main text for more details)
Clumpy wind		The wind geometry would need to be fine tuned to have uniformly separated clumps. The probability of formation of such clumps by chance is less than 1 in 50,000	Disfavoured (see "A single clumpy outflow is disfavoured" in Methods)
Slow absorber	Slow absorbers can, in principle, produce similar spectral signatures	The XMM-Newton/RGS and EPIC/pn spectrum rule out a slow absorber that can produce such a broad feature - A typical slow/warm absorber is distant from the SMBH and cannot produce a rapid (~ week timescale) quasi-periodic variability seen here	Disfavoured (see "The broad residuals cannot be explained with slow absorbers" in Methods)
X-ray reflection by a corona	Seen in several highly accreting AGN with an X-ray corona (120)	Lack of a Compotonizing corona/powerlaw component in the X-ray spectrum	Disfavoured (see "Relativistic reflection is disfavoured" in Methods)
X-ray reflection by a disc	Argued to operate at least in one changing-look AGN (96)	 Lack of a geometrically thick surface for reflection, would require a fine-tuned disc geometry Unphysically large amounts of reflected emission than the primary thermal emission 	Disfavoured (see "Relativistic reflection is disfavoured" in Methods for more discussion)
Magnetically arrested accretion disc	Preliminary work by (117) suggests that outflows can be produced through repeated magnetic reconnection events	Based on state-of-the-art high-resolution simulations it is unclear if such outflows would be quasi-periodic in nature Such regular outflows are not seen in lower-resolution simulations	Plausible, but with important caveats (see Figure 8 of (117))
Quasi-periodic eruptions (QPEs)	Seen in a small sample of AGN	 - QPEs manifest as large amplitude flux bursts as opposed to changes in ODR. - Variable outflows have not been reported in known QPE sources. - ASASSN-20qc's X-ray spectrum is distinct compared to known QPE sources (92, 94, 115) 	Disfavoured (see "A spectral model with two thermal components akin to quasi-periodic eruptions is ruled out" in Methods)
Repeating partial stellar tidal disruption	- Argued to operate in at least 3 systems (53, 121, 122)	The expected orbital period would be orders of magnitude longer than what is seen here (123) No evidence for a similar variability in the optical light curve A stellar core's influence radius would be too small to produce the observed outflow	Disfavoured
Radiation pressure driven outflows	Observed in a sample of accreting stellar-mass black holes (124)	- The persistence of the outflow over a factor of >200 change in X-ray flux suggests negligible radiation driving	Disfavoured
An orbiting object repeatedly perturbing the SMBH accretion disc	 Naturally explains QPOuts Supported by 2D and 3D GRMHD simulations Consistent with theoretical rates of formation of SMBH–IMBH binaries (125) 		Favoured (see "Perturber-induced outflow scenario" in Methods)

Happy to discuss more in Q&A

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

An orbiting peturber-induced outflow model

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

Simulations suggests object-AGN disk interactions can drive regular outflows

Matter pushed towards the magnetic poles to launch ultrafast outflows

Observational consequence: a quasi-periodically varying outflow (provided favorable orientation: +-20 degrees around the axis)

Thanks to Petra Suková, Michal Zajaček, Vojtech Witzany, Vladimir Karas

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

Simulations suggests object-AGN disk interactions can drive regular outflows

Matter pushed towards the magnetic poles to launch ultrafast outflows

Observational consequence: a quasi-periodically varying outflow (provided favorable orientation: +-20 degrees around the axis)

Thanks to Petra Suková, Michal Zajaček, Vojtech Witzany, Vladimir Karas

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

Simulations suggests object-AGN disk interactions can drive regular magnetically-driven outflows

Working on fine tuning the color scheme

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

Nature of the perturber/secondary

The strength of the outflow depends on the influence radius of the perturber

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

Nature of the perturber/secondary

The strength of the outflow depends on the influence radius of the perturber

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

Nature of the perturber/secondary

What objects can have an influence radius of ~ R_g ? Intermediate-mass Black holes (100-100,000 M_{\odot})

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

Overall outburst is consistent with a tidal disruption event

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

The expected rate of TDEs and GW inspiral time can further constrain the perturber's mass to < 10,000 M_{\odot}

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

A potential model: A case for a pre-existing 10 million solar SMBH–IMBH binary (orbital separation about 100 Rg)

Pre-existing EMRI/IMRI + TDE = QPOuts

Repeating Extragalactic Transients

Dynamical timescales vs IMBH (10⁴ M_o) radial distance

Grinding timescale is long for ADAF/low-luminosity AGN

This source was a low-luminosity AGN (<10⁻⁵ $L_{Eddington}$) prior to the outburst

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

A potential unification model: An Object Embedded in an AGN disk illuminated by a tidal disruption event

Based on work by Suková, Zajaček, Witzany, Karas et al. 2021, ApJ, 917, 43

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

The strengths of the unequal mass binary model/framework

- Minimal parameters:
 - Eccentricity
 - Geometric orientation with respect to us

High eccentricity \rightarrow secondary gets close to the primary's event horizon \rightarrow modulates X-ray flux and outflows

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

The strengths of the unequal mass binary model/framework

- Minimal parameters:
 - Eccentricity
 - Geometric orientation with respect to us

Low eccentricity \rightarrow secondary does not get close to the primary's event horizon \rightarrow weakly modulates X-ray flux (no QPEs, only QPOuts)

Dheeraj R Pasham (DJ)

Repeating Extragalactic Transients

The strengths of the unequal mass binary model/framework

- Minimal parameters:
 - Eccentricity
 - Geometric orientation with respect to us
- Can explain:
 - Outflows and their timing
 - The range of observed periods
 - The quasi-periodicities (eccentricity)
 - Why only some have QPOuts vs QPEs+QPOuts
 - Stochastic nature of the individual eruptions
- Strength of the outflows is determined by mass ratio

The caveats of the unequal mass binary model/framework

- Rates of such binaries is unknown (but consistent with theoretical estimates)
- Need to explore the role of magnetic field structure and the spin on outflows
- Our simulations ignore drag/back-reaction of the accretion flow on the perturber (optically thin accretion flows)
 - Justified based on the M-σ masses and observed quiescent luminosities (low-luminosity AGN)

Summary

- Repeating extragalactic nuclear transients <u>could be</u> from objects embedded in *low-luminosity* AGN disks
- Future work includes identifying more systems and investigating their multi-messenger potential

Repeating Extragalactic Transients